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It hence follows that the Saint-Venant-Mises equations utilized in this paper will be 
satisfied to within a small parameter m. This parameter will be substantial only at a 
significant distance from the body boundary. The transverse shock vanishes there and stresses 
on the zone boundaries are made continuous. However, the flow will be close to that considered 
near the body and the results obtained for the stresses and forces acting on the body can be 
used for an approximate estimate of the real quantities. 
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THE THEORY OF THE FRACTURE OF A SUPERCONDUCTOR IN A MAGNETIC FIELD* 

E.A. DEVYATKIN and I.V. SIMONOV 

The stress-strain state of a superconductor in a static magnetic field is 
investigated from the point of view of the possibility of fracture. Only 
one force factor is taken into account, namely, the interaction between 
the field and the surface currents generated by the magnetic field (the 
Meissner effect /l/l. When there are stress concentrators present (corner 
points, microcracks, inclusions etc.) comparatively weak magnetic fields, 
for which the specimen does not lose its property of ideal 
superconductivity, may turn out to be dangerous /l-3/. However, the 
formulation of the problem remains correct when the superconductor 
transforms into the normal phase (or simply for a normal conductor) in a 
variable intense magnetic field under skin-effect conditions and in a 
quasistatic mechanical state. In this case t,att, is the condition of 
quasistatics, where t, and t, are the characteristic times of 
variation of the magnetic field and the range of wave deformation (volume 
or shape) of the characteristic dimension of the specimen. Moreover, 
when there are many factors present, this makes the problem a 
multiparametric one and extremely complicated to analyse, a preliminary 
investigation of the effect of each of these factors separately is 
advisable. The properties of the solutions of plane problems are 
analysed in detail, in particular, using the examples of regions of 
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canonical forms: a corner, a cylinder, and a specimen with a cut in the 
form of an ellipse. The solution of a spatial problem for a sphere is 
given. 

I. &vmutation of the problem. An ideal superconductor (the-region 6~ R”, n = 2, 3) 
surrounds a matrix of a normally conducting metal or vacuum. Each medium is uniform and iso- 
tropic in all its properties, linearly elastic for mechanical forces and has brittle strength. 
The region Q (the supplementof 8 to R”), where the matrix is contained, is penetrated by a 
magnetic field of strength H from sources in the same region and from currents induced on the 
surface of separation r = 86 for which the following physical conditions of ideal super- 
conductivity are satisfied: 

IHrl<Hc(T), T<Tc (1.1) 

where Hc and Tc are the critical values of the magnetic field and the temperature, and T is 
the temperature of the composite structure. The surface currents expel the magnetic field 
from the superconductors: H = 0 in the region @/I, 3/. For a superconductor of the second 
kind Hc = Hc,, where Hc, is the lower value of the critical field. The mixed state (Hc,< 
I Hr I -C Hcz), which is of undoubted interest for new composite superconductors /2/, is not 
considered here. However, the results obtained can also be used as an approximation for 
I Hr I < Ha, so long as the field penetrates slightly into the region 6. Under skin-effect 
conditions /3/ limitations (1.1) are removed. 

We will neglect the distribution of the field H and the currents in the depth of the 
region I?. This idealization is all the more correct the smaller the ratio h/L, where h& 
IO-' m is the depth of penetration of the magnetic field into the superconductor and L is the 
characteristic linear dimension of the region e/1, 3/. We will not specify the sources of 
the magnetic field in any more detail except to say that the unperturbed field (when there is 
no superconductor) will be assumed to be known a priori. 

The magnetic field strength can be represented in the form of the sum of the unperturbed 
field H, and the field H, of the superconductor. The perturbed field H, is rotational 
everywhere in the region Q and we can introduce a potential 0. The result of the interaction 
between the field and the currents is a non-negative pressure p on the surface r from the 
side of the conductor (the tangential forces are equal to zero) /3/. 

The mathematical formulation of problem 1 on determining the field H, the density of the 
surface currents jr and the pressure p follows from Maxwell's equations, the conditions j = 0 
in the region 9, H = 0 in the region 6, the conditions of continuity of the normal com- 
ponent of the induction vector pp,,H on passing through the boundary r, the connection 
between the jump in the tangential component of the vector H and the currents jr and the 
pressure /3/, the principle of superposition, and the conditions for the perturbation to 
disappear at infinity (if 6 is a finite region), namely. 

A@ = 0, H, = V@(Q), H = H, +H, (1.2) 

%D,/ap = --Hop(r), @ (-) = 0 

rot H = jr6 (p) + jr = Hz; p = ‘I,~~oH,2 (1.3) 

Here o is the coordinate along the normal to the surface, J?, H,,, H, are the projections on 
the normal and on r, 6 is the delta function and H is understood in the sense of generalized 
functions with carriers r and B 141, n is the magnetic permeability of the matrix, and p0 
is the magnetic permeability of free space. 

The first of Eqs.(1.3) serves to define the direction of the current, and the second (a 
consequence of it) gives the value of this current. For the potential CD we single out the 
Neumann problem for Laplace's equation. The field H, the currents jr and the pressure p 
can then be obtained from (1.2) and (1.3). 

The formation of problem 1 is correct for a smooth surface r. If there are corner and 
conical points on r we must formulate additional conditions at these points /5/. They follow 
from considerations of the integrability of the energy density w = ‘I,~~LoH2 and consist of 
the following inequalities for the indicator of the singularity of the solution as r-+0 
(here r is the distance to the singular point): 9, - +,a>0 is the corner point, and 
a > --'I, is a conical point. 

For n = 2 the case of a single-component field H = (O,O, H,), H, =H.(s, y) must be 
considered separately. Then, in view of the corollary 

rot H = 0 + i3HLi&z = 8H,lay = 0 (Q) 

the solution of problem 1 can be written immediately 

H, = H = j,. = const, p = ‘I,ppoH2 (1.4) 
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Consequently, a constant current circulates in the surface r in the x, y plane and 
the pressure p is also constant. 

After solving problem (1.2) and (1.3) we formulate problem 2. For a given system of 
volume and surface force factors, in which we also include the load p, and elastic parameters 
of the materials: E~,EQ are Young's moduli and VQ,VQ are Poisson's ratios, it is required 
to determine the stress state of the superconductor and the conductor. 

Mathematically, problem 2 consists of solving the equations of the static theory of 
elasticity /6/ in the region 6 and P for the following conditions for matching the solutions 
on the boundary of complete contact and the condition at infinity: 

[upI = p, iurl = [al = 0, u (cu) = u, 

Here [u,, u,, ul is the jump in the stress and displacement vectors on changing from the 

region 6 to the region 8, and u is the stress tensor. It is assumed that one of the regions 
is finite, and that we are given the uniform stress state u, at infinity. 

This problem belongs to a number of complex contactproblemsof the theory of elasticity. 
For bodies of canonical form (a cylinder, sphere, etc.) the solution can be constructed in the 
form of finite or infinite series in the separable parts of the solutions. Below, these sol- 
utions will be obtained neglecting the elastic resistance of the matrix. 

The last step consists of analysing the stress field from the point of view of the brittle 
strength of materials. Using well-known ideas of the theory of fracture /7-lO/ we will formu- 
late one of the possible versions of the criterion of fracture, including three new parameters 
for each of the materials: a structural parameter or the radius of the nucleus of fracture 

rc1 and the strength for uniaxial extension and for pure shear, ug .and lo. The. conditions 
for fracture on the interface, must, generally speaking, be stipulated separately, but the 
ahesion strength is often close to the strength of a weak material, which is also used here. 

The analysis of the state of the system using this criterion is carried out as follows. 
The set of points M will be said to be susceptible to fracture if at these points local maxima 

of the tensile stresses u or tangential stresses r are reached (in space and with respect 

to the orientation of the area), such that max cs> u0 or maxr>r. , 0 The set M also includes 

points of singularity of the stresses. 
Around any point mE M, such as around the centre, we will describe a spherical (R3) 

or a cylindrical (R2) surface rc of radius rc. Then the element of volume oc, inside this 
surface, is, by definition, in an elastic state if u* = mar u Ire< u0 and rc* = max r ITc (z,, 
in a fractured state if u*> u,, or t*> rO, and in a limiting case if u*=u,,z* <rO or 
o* ,( uo, z* =ro. A judgement can be made on the state of the system as a whole by adding up 
all the information on the state of the local regions oc. Thus, the state of the system is 
said to be limiting if at least one element oc is in such a state and there are no fractured 
elements, it is said to be in a fractured state if at least one element oc is in such a state 

and, finally, it is said to be in a state of elastic equilibrium if all the elements oc are 

elastic or the set M is empty. (We do not rule out other possible formulations of the cri- 

terion of fracture in view of the complexity of the phenomenon, the large variety of materials, 
and the absence of any single opinion on this problem). 

In the case when rc < h, where h is the characteristic dimension of the figure of the 
stress field around the point m, the analysis is simplified and is carried out for the values 
of u and m at this point. 

A study of the stress state is also important from the point of view of investigating 
the transition of a superconductor into the normal phase or into an intermediate state. As 
we know /l-3/, for certain superconductors it may be necessary to take into account the 
dependence of the critical magnetic field Hc on the stresses. 

We will now investigate some specific examples. For simplicity, we will neglect the 

elastic resistance of the medium in the region Q compared with the elastic resistance of 

the superconductor (En/E*<1 or En = 0). The pressure p will be assumed to be the only 
load on the specimen. 

2. The pZanar probtem, the fietd W=(O,O,W,). The solution is given by formulas (1.4). 
Suppose the region @ is finite. Then the assertion holds that the cylindrical specimen is 

in a hydrostatic state and, even when there are corner points or initial cracks, will not be 
fractured for any values of the stress Hz (the most favourable case). 

We will consider some cases when the region 6 is external. Suppose that in the super- 

conductor there is a circular opening, far from the boundary, and the field (O,O,H,) is con- 

centrated in it. Then, along the outline of the opening there will be tangential stretching - 
forces of stress (5 = p. and thus a fracture field of H = 1/2oo@uLo). 

For an ellipsoidal cut with semi-axes a, b(e> b) in an unbounded superconductor, un- 

loaded at infinity, susceptible points will be vertices with the last radius of curvature of 

the contour r* = b2ia. 
We must distinguish the cases r*<rc, r* - rc and r* > rc. 
For r* Q rc (a thin ellipse) at distances from the vertex -rc one obtains an 
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asymptotic form of Sneddon's solution /ll/ for a cut. According to the criterion of fracture 
on the outline and using Sneddon's formula /ll/, we can obtain an expression for the fracture 

- 
field Hz = 2 [ooI(~~o)l 1/2rcla. 

For r* > rc we obtain an estimate of the limiting state from the expression for the 
tensile stress at the vertex of the ellipse /ll/ Hz = 20,bl(~~oa). 

For the asymptotic transition bla -+ 0, b21a>rC +O we have H -0, i.e. for very small 
values of the parameter rc the destructive field may be fairly small. An analytical estimate 
of the radius rc is given in /S/ and the stress fields are obtained by comparison before the 
beginning of fracture for simple stretching of the specimen and around the vertex of the 
crack, which is in the limiting state. It follows from this that, for example, for metals 

rc - IO+--1O-' m, while different sources, where data are given on experimental measurements 
of this parameter, confirm this estimate. 

For other forms of cuts, an answer can be obtained by analysing well-known solutions (for 
example, a lune and a thin cut or arbitrary form were considered in /ll/). 

3. The planar probtem, the field H = (H,, H,. 0). If the field of the vectors H are 
situated in the 2, y plane, problem 1 is similar to.a certain problem of non-cavitating flow 
past an underformed contour r by a laminar flow of an ideal incompressible liquid. The 
vector of the current density jr is perpendicular to 2, y plane. Non-zero compressive 
forces act almost everywhere on the contour I?. In view of the non-uniformity of the pressure 
distribution tensile stresses may arise in the specimen, but, as previously, it can be said 
that 
some 

for convex surfaces r tangential stresses will be the most dangerous. We will consider 
examples of specimens of canonical forms. 

Aperture angle a. The complex potentials 

W k = A &+I, K k = 1, 2 (dWidz = H, - iH,) 

z = r&e ( p1 = ai(2n - a], /3, = (a - n)i(2n - a) 

give solutions of the problems of "flow past 
metrical with respect to the bisector of the 

(3.1) 

We will write expressions for the field and the pressure on the faces of the wedge 

a wedge by a flow H", symmetrical and antisym- 
angle, from infinity (see the figure). 

b 

Hr = (fir + 1) A,& p = l/,~~o (fir + 1)2 Ar’V”h. (3.2) 

The general expressions for the asymptotic forms of the functions H, and p of the corner 
point of an arbitrary contour I', as follows from the general theory of the behaviour of the 
solutions of elliptic equations at corner points of a region /5/, differe from the right-hand 
sides of Eqs.(3.2) by the terms 0 (I), 0 ($k"), r + 0. 

We will analyse the signs of pk: & 20 for all O,< a< 2n, p,> 0 when n<a<22n 
(the salient angle) and pz<O when O<a<<n (the re-entrant angle). Hence it follows 
that at the vertex of the re-entrant angle in the general case (the vector H, is directed' 
at an arbitrary angle to the bisector of the wedge) the field and the pressure are singular, 
and the stresses are also singular but compressive. The symmetrical case is an exception. 
The behaviour of the function Hr confirms the destruction of the superconductivity about 
the vertex of the corner; values of Hr =Hc are achievable. Zones appear with the usual 
behaviour of the conductor in the region fi in which the magnetic field penetrates into the 
depth of the superconductor. This implies changes in the formulation of the problem and, 
possibly, in the asymptotic form of the solution at the corner (a problem that requires a 
separate consideration). 

At the vertex of the salient angle the field and the pressure disappear as r -0, but 
inside the corner there are singular tensile stresses: (I - Kv, x > 0. An estimate of the 
stress intensity factor K must be made starting from the solution of the problem as a whole. 

A solution of one class of such problems - the flow past polygons is given on the basis 
of the Schwars-Christoffel theorem /12/. Mechanical problem 2 can then also be solved using 
a conformal transformation of the region /13/. The dependence of the index x on the angle 
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cz is universal /14/ (whereas the coefficient K depends on the intensity of the sources and 
the geometry of the region). The limiting loads (with respect to the field) are found from 
the equation K = o,r$. 

A cylinder in a transverse magnetic field. Using the solution of the problem of circu- 
lation-free flow of an ideal fluid past a cylinder /15/, we will determine the magnetic field 
strength and the pressure on the surface of the cylinder r = 1: 

HT = -2H, sin 6, p = p0 sin2 0, p,, = 2~y,,H,~ 

where 0 is the angle between the vector H, rarkl the radius-vector r, and p0 is the maximum 
pressure. From the general solution of the first boundary-value problem of the theory of 
elasticity for a cylinder /6/ we can find the stress inside the body, normalized to pO: 

u Tr = -sin20, (T&l = 1/2 [(2r2 - 1) cos 28 - 11 

Uzz = V (r2 co.5 26 - I), 17,~ = 1/z (9 - 1) sin 26 

The normal stresses are only compressive, and hence fracture is possible due to the action of 
shear stresses. A maximum of the modulus of the stress (J,.e is reached when r = 0, tJ = y&n/4 
and is equal to I/Z. Other maximum shear stresses (I/* lo,, -I&: 1, 1/z Ioea - CI:: 1 ) are obtained 
for I3 =&n/4 on the surface of the cylinder, and they are the same and equal to 'I, - v. 
This is less than the maximum of the stress u,e. 

We will calculate the limiting value of the field for fracture by shear: H, = l"o0l~po). 
We can put forward the suggestion that when H,> H,, a shear crack begins to develop from 
the centre of the specimen at angles e = +ll4. 

4. The spatial problem of a sphere in a uniform magnetic field. By analogy with the 
solution of the corresponding hydrodynamic problem of the flow of an ideal fluid past a sphere 
/15/, we first obtain the values of the field and the pressure on the surface 

HT = -31,H, sin 0, p = p,, sin" 0, p0 = n'18 pHoH,' 

The stress state of the elastic sphere can be obtained from the general solution /6/ 
(normalized to pO) 

%r = li,n (17 + v (2 t 3791 (3 c~~? e - 1) - b-1) 
u08 = -q (2~ + (7 + v) r? + [7 + 2~ - 7 (2 + v) r?] ~0s~ ej 

or8 = -V2q (7 + 2v) (1 - r*) sin 28 

oQQ = -_rl (7 + 4~ + [SV - (7 + 11v)cos2 ei r’), q = (7 _I- 5v))l 

The maximum shear stresses, as in the case of the cylinder, develop at the centre of the 
sphere in small areas 0 = *n/4 and are equal to 

max 1 c&e I = lJsq (7 + BY) = ‘1, 

On the surface of the sphere (r = 1) we have 

U,, = -sin2 8, (see = 2vq - sin2'e, urcm = n I2v - (7 + 11~) sin* ei 

The maximum tensile stresses (they are of the order of 0.2~ ) are very much smaller 
than the maximum shear stresses. Hence, the qualitative and quantitative conclusions regard- 
ing the possible nature of the fracture and the value of the fracture field are similar to 
the case of a cylinder. 

The authors thank R.V. Gol'dshtein for his comments. 
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VARIATIONAL PRINCIPLES OF NON-LINEAR THEORY OF BRITTLE FRACTURE* 

LE KHAN CHAU 

An energy criterion of equilibrium of a non-linearly elastic body with a 
crack is formulated. Equations of statics and conditions which must 
hold at the outer boundary of the body, at its surface and at the slit 

edge, are derived. An evolutionary variational inequality is 
postulated, from which the formulation of the dynamic problem of the 
motion of a body with an expanding crack follow. 

I. ~omnutation of the problem. Let us consider an elastic solid which has a defect 
when in its natural state. The defect can be modelled by a displacement discontinuity surface, 
which will be called, from now on, the crack. Let this crack be situated on a smooth, two- 
dimensional surface 9, with a smooth boundary XZ. We take the natural configuration of the 
body occupying the region VQ = V\(Q U an) of three-dimensional Euclidean space as the 
reference configuration, and denote the Cartesian coordinates of the particles of the body 
in this configuration by Xo,a = 1,2,3. In the deformed state the Cartesian coordinates of 
the particles will be given by the formulas 

Ji = .rj (X,, x,, X,), i = 1, 2, 3 

The coordinates xi fill the volume v of the current configuration. If the deformed 
body with a crack is in a state of equilibrium, the functions xi (Xc) will map in 1:l 
correspondence with a positive Jacobian. When X, pass through 0, the functions xi become 
discontinuous. The traces xi (-Xl) on both sides of P describe the surfaces of the crack 
in the deformed state (Fig.1). 

The first problem consists of establishing the criterion of equilibrium of the con- 
figuration zi (X,). With this purpose in mind, we shall formulate the following variational 
principle: in order for the defromed body with a crack to remain in equilibrium, it is 
necessary and sufficient that the variation in the energy of the body taken in a specified 
configuration be greater than, or equal to zero for all admissible configurations. We shall 
call's virtual configuration of the body admissible, if its displacement discontinuity surface 
contains Q, or if it coincides with it. 

If the body has no crack, the criterion of equilibrium in the class of all continuous 
configurations reduces to the well-known principle of stationarity of the energy of a non- 
linearly elastic body /l-3/. The generality of the energy criterion of equilibrium was 
satisfactorily demonstrated-for other mechanical systems by Gibbs /4/. The papers by Griffiths' 
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